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Abstract
In this contribution we announce a complete classification and new exotic
phenomena of the meromorphic structure of ζ -functions associated with
conic manifolds proved in [37]. In particular, we show that the meromorphic
extensions of these ζ -functions have, in general, countably many logarithmic
branch cuts on the nonpositive real axis and unusual locations of poles
with arbitrarily large multiplicity. Moreover, we give a precise algebraic-
combinatorial formula to compute the coefficients of the leading order terms
of the singularities.

PACS numbers: 2.30−f, 03.70+k
Mathematics Subject Classification: 58J28, 58J52

1. Introduction

It is well known, that a precise understanding of the meromorphic structure of zeta functions
for Laplace-type operators is very important and its applications in many areas of mathematics
and physics are ubiquitous. For example, via its relation to the small t-asymptotic expansion of
the heat kernel, the zeta function ζ(s,�) associated with a Laplacian � on a smooth manifold
with or without boundary encodes geometrical and topological information about the manifold
(see, e.g., [33]). In some detail, we have for the scalar Laplacian over a compact n-dimensional
Riemannian manifold M that

(4π)
n
2 �(s)ζ(s,�) ≡ Vol(M)

s − n
2

±
√

π Vol(∂M)

2

1

s − n−1
2

modulo a function that is analytic at s = n
2 , s = n−1

2 , where the ‘+’ sign is used for Neumann
conditions, the ‘−’ sign is used for Dirichlet conditions, and Vol(M), respectively, Vol(∂M)

denote as usual the volume of M, respectively ∂M . Furthermore, it is known in the same context
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that the zeta function ζ(s,�) has a meromorphic extension to the whole complex plane with at
most simple poles at the points s = n−k

2 /∈ −N0 for k ∈ N0 with N0 = {0, 1, 2, . . .}. Moreover,
ζ(s,�) is analytic at the points s ∈ −N0. In particular, ζ(s,�) is analytic about s = 0 which
allows us to define a zeta regularized determinant. This has far reaching applications in
quantum field theory (see, e.g., [22–24, 35, 36]) and in the context of the Reidemeister–
Franz torsion [48]. There are many other examples where the meromorphic structure of zeta
functions is crucial, found in, for instance, index theory, the study of the Casimir effect, the
evaluation of trace anamolies, and so forth. We refer the reader to [9, 24, 33, 36, 53] for
reviews. The basic properties mentioned are valid for smooth manifolds with local boundary
conditions and are well-known facts that have been exploited for decades.

The aim of this contribution is to show that the properties for zeta functions of Laplace-
type operators on smooth manifolds are very special indeed, and so are the applications based
upon this structure. Here, we announce a new result for manifolds with conical singularities
whose zeta functions possess unusual meromorphic structures unparalleled in the zeta function
literature for Laplacians. Thus, the usual structure totally breaks down when the manifold
has a conical singularity. We begin in section 2 by reviewing the important subject of conic
manifolds introduced by Cheeger [12, 13], which appear in many areas of physics including
when one studies the Aharonov–Bohm potential [1] (see also [3, 5, 19, 34, 43]), classical
solutions of Einstein’s equations [50], cosmic strings [54], global monopoles [4] and the
Rindler metric [44], to name a few areas. Afterwards, in section 3, we study the zeta
function associated with general self-adjoint extensions of Laplace-type operators on conic
manifolds and discuss their extraordinary properties including countably many unusual poles
and logarithmic singularities. We also give an explicit algebraic-combinatorial formula to
compute these singularities and show that such singularities occur even in simple examples.

Finally, we remark that one can always conjure up ‘artificial’ zeta functions having
unusual properties compared to the ones described at the beginning. For example, the zeta
function associated with the prime numbers P,

ζ(s) =
∑
p∈P

p−s ,

has a logarithmic branch cut at s = 1 (see, e.g., [49]). But for natural zeta functions, that
is zeta functions of Laplacians on compact manifolds associated with geometric or physical
problems, the unusual properties described here seem to be unique.

2. Conic manifolds

In this section, we study Laplacians on conic manifolds. One way to understand operators
over conic manifolds is to start with simplest conic manifolds.

2.1. Regions in R
2 minus points

Let � ⊂ R
2 be any compact region and take polar coordinates (x, y) ←→ (r, θ) centered at

any fixed point in �. In these coordinates, the metric takes the form dx2 + dy2 = dr2 + r2dθ2,
which is called a conic metric. The standard Laplacian on R

2 takes the form

�
R

2 = −∂2
x − ∂2

y = −∂2
r − 1

r
∂r − 1

r2
∂2
θ ,

and, finally, the measure transforms to dx dy = r dr dθ . Writing φ ∈ L2(�, r dr dθ) as

φ = r−1/2φ̃, (1)

2
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where φ̃ := r1/2φ, we have∫
�

φ(r, θ)ψ(r, θ)r dr dθ =
∫

�

φ̃(r, θ)ψ̃(r, θ) dr dθ.

A short computation shows that

�
R

2φ =
(

−∂2
r − 1

r
∂r − 1

r2
∂2
θ

)
φ = r−1/2�φ̃,

where � := −∂2
r + 1

r2 AS
1 with A

S
1 := −∂2

θ − 1
4 . In conclusion: under the isomorphism (1)

(called a Liouville transformation), L2(�, r dr dθ) is identified with L2(�, dr dθ), and

�
R

2 ←→ −∂2
r +

1

r2
A

S
1 , where A

S
1 = −∂2

θ − 1

4
. (2)

Note that the eigenvalues of A
S

1 are given by
{
k2 − 1

4

∣∣k ∈ Z
}
, in particular, A

S
1 � − 1

4 .

2.2. Conic manifolds

Let M be a n-dimensional compact manifold with boundary � and let g be a smooth Riemannian
metric on M \ ∂M . We assume that near � there is a collared neighborhood U ∼= [0, ε)r × �,
where ε > 0 and the metric g is of product type dr2 + r2h with h a metric over �. Such a metric
is called a conic metric and M is called a conic manifold, concepts introduced by Cheeger
[12, 13]. As in the R

2 case, using a Liouville transformation over the collar U, L2(M, dg) is
identified with L2(M, dr dh) and the scalar Laplacian �g is identified with

�g|U = −∂2
r +

1

r2
A�, where A� = �� +

(
1 − n

2

)(
1 +

1 − n

2

)
(3)

and �� is the Laplacian over �. Note that A� � − 1
4 because the function x(1 + x) has the

minimum value − 1
4 (when x = − 1

2 ).
Regular singular operators [8] generalize example (3) as follows. Let E be a Hermitian

vector bundle over M, let g be a metric on M of product-type g = dr2 +h over U , and let � be a
second-order elliptic differential operator over M \ ∂M that is symmetric on C∞

c (M \ ∂M,E)

such that the restriction of � to U has the ‘singular’ form

�|U = −∂2
r +

1

r2
A�, (4)

where A� is a Laplace-type operator over � with A� � − 1
4 .4 The operator � is called a

second order regular singular operator. We remark that the manifold M may have boundary
components up to which � is smooth; at such components, we put local boundary conditions
such as the Dirichlet or Neumann boundary conditions but we will not belabor this point. In
view of (2) and (3), the Laplacian on a punctured region in R

2 and the scalar Laplacian on a
conic manifold are regular singular operators. Other examples include the Laplacian on forms
and squares of Dirac operators on conic manifolds [8, 12–14, 36, 41, 45].

2.3. Self-adjoint extensions

In this kind of a setting there are different self-adjoint extensions

�D := � : D → L2(M,E)

possible, where D ⊂ Dmax := {φ ∈ L2(M,E)|�φ ∈ L2(M,E)}; for general references
on self-adjoint extensions of Laplacians and their applications to physics (see, e.g., [2, 6]).

4 This condition is needed for technical reasons; if A� 	� − 1
4 , then � is not bounded below [8, 10].

3
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From Von Neumann’s theory of self-adjoint extensions [12, 13, 32, 42, 47], the self-adjoint
extensions of � are parametrized by Lagrangian subspaces in the eigenspaces of A� with
eigenvalues in the interval

[− 1
4 , 3

4

)
. To describe these extensions, denote by

−1

4
= λ1 = λ2 = · · · = λq0︸ ︷︷ ︸

=− 1
4

< λq0+1 � λq0+2 � · · · � λq0+q1︸ ︷︷ ︸
− 1

4 <λ�<
3
4

(5)

the spectrum of A� in the finite interval
[− 1

4 , 3
4

)
where each eigenvalue is counted according

to its multiplicity. Then the self-adjoint extensions of � are in a one-to-one correspondence
to the Lagrangian subspaces in C

2q where q = q0 + q1. We note that (see, e.g., [40]), a
subspace L ⊂ C

2q is Lagrangian if and only if there exists q × q matrices A and B such
that the rank of the q × 2q matrix (A B) is q,A′B∗ is self-adjoint where A′ is the matrix
A with the first q0 columns multiplied by −1, and L = {φ ∈ C

2q |(A B)φ = 0}. Given
such a subspace L ⊂ C

2q there exists a canonically associated domain DL ⊂ Dmax such
that �L := � : DL → L2(M,E) is self-adjoint. Any such self-adjoint extension has a
discrete spectrum [42] and hence, if {µj } denotes the spectrum of �L, then we can form the
corresponding zeta function

ζ(s,�L) :=
∑
µj 	=0

1

µs
j

.

For special self-adjoint extensions, like the Friedrichs extension, the zeta function has been
studied by many people going back to the 1970s [7, 8, 10, 11, 13, 15, 16, 20, 21, 28, 42, 45,
52]; the properties are similar to those for the smooth case described in the introduction
except perhaps for an additional pole at s = 0. On the other hand, for general self-
adjoint extensions, the zeta function ζ(s,�L) has, in general, very pathological properties
that remained unobserved and that we shall describe in the following section.

Zeta functions have also been studied for more general ‘cone operators’, which generalize
regular singular operators (see, e.g., Gil [29]). For recent and ongoing work involving
resolvents of general self-adjoint extensions of cone operators, which is the first step to a full
understanding of zeta functions, see Gil et al [30, 31] and Coriasco et al [17].

3. Pathological zeta functions on conic manifolds

In this section, we state our theorem that completely classifies the meromorphic structure of
zeta functions ζ(s,�L) and we give concrete examples of the theorem.

3.1. The main theorem

Let A and B be q ×q matrices defining a Lagrangian L ⊂ C
2q . Before stating the main result,

we apply a straightforward three-step algebraic-combinatorial algorithm to A and B that we
need for the statement.

Step 1. We define the function

p(x, y) := det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B

xIdq0 0 0 0

0 τ1y
2ν1 0 0

0 0
. . . 0

0 0 0 τq1y
2νq1

Idq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

4
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where Idk denotes the k × k identity matrix and where

νj :=
√

λq0+j +
1

4
, τj = 22νj

�(1 + νj )

�(1 − νj )
, j = 1, . . . , q1.

Here, q0, q1, λj are explained in (5). Evaluating the determinant, we can write p(x, y) as a
‘polynomial’

p(x, y) =
∑

ajαxjy2α,

where α are linear combinations of ν1, . . . , νq1 and ajα are constants. Let α0 be the smallest
of all α with ajα 	= 0 and let j0 be the smallest of all j amongst ajα0 	= 0. Then factoring out
the term aj0α0x

j0y2α0 in p(x, y) we can write p(x, y) in the form

p(x, y) = aj0α0x
j0y2α0

(
1 +

∑
bkβxky2β

)
(7)

for some constants bkβ (equal to akβ/aj0α0 ).

Step 2. Using formal power series expansion, we can write

log
(

1 +
∑

bkβxky2β
)

=
∑

c�ξ x
�y2ξ (8)

for some constants c�ξ . ξ appearing in (8) are nonnegative, countable, and approach +∞
unless β = 0 is the only β occurring in (7), in which case only ξ = 0 occurs in (8). Also, �

with c�ξ 	= 0 for a fixed ξ are bounded below.

Step 3. For each ξ appearing in (8), define

pξ := min{� � 0|c�ξ 	= 0} and �ξ := min{� > 0|c�ξ 	= 0}, (9)

whenever the sets {� � 0|c�ξ 	= 0} and {� > 0|c�ξ 	= 0}, respectively, are nonempty. Let P,
respectively L, denote the set of ξ values for which the respective sets are nonempty. The
following theorem is our main result [37].

Theorem 3.1. For an arbitrary Lagrangian L, the ζ -function ζ(s,�L) extends from �s > n
2

to a holomorphic function on C\(−∞, 0]. Moreover, ζ(s,�L) can be written in the form

ζ(s,�L) = ζreg(s,�L) + ζsing(s,�L),

where ζreg(s,�L) has possible simple poles at the usual locations s = n−k
2 with s /∈ −N0 for

k ∈ N0 and at s = 0 if dim � > 0, and where ζsing(s,�L) has the following expansion:

ζsing(s,�L) = sin(πs)

π

⎧⎨⎩(j0 − q0) e−2s(log 2−γ ) log s +
∑
ξ∈ P

fξ (s)

(s + ξ)|pξ |+1
+
∑
ξ∈ L

gξ (s) log(s + ξ)

⎫⎬⎭,

(10)

where j0 appears in (7) and fξ (s) and gξ (s) are entire functions of s such that

fξ (−ξ) = (−1)|pξ |+1cpξ ξ

|pξ |!
2|pξ | ξ

and

gξ (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c�0,0

2�0

(�0 − 1)!
s�0 + O(s�0+1) if ξ = 0,

−c�ξ ξ

ξ2�ξ

(�ξ − 1)!
(s + ξ)�ξ −1 + O((s + ξ)�ξ ) if ξ > 0.

(11)

5
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Remark 3.2. This theorem is very simple to use in practice and gives precise results
immediately as we show in the following subsection. The regular part ζreg(s,�L) will only
have possible poles at s = n

2 − k /∈ −N0 in the case that � is the only boundary component of
M and the residue of ζreg(s,�L) at s = 0 is given by

Ress=0ζreg(s,�L) = − 1
2 Ress=− 1

2
ζ(s, A�);

in particular, this vanishes if ζ(s, A�) is in fact analytic at s = − 1
2 . The expansion (10) means

that for any N ∈ N,

ζsing(s,�L) = sin(πs)

π

{
(j0 − q0) e−2s(log 2−γ ) log s +

∑
ξ∈ P,ξ�N

fξ (s)

(s + ξ)|pξ |+1

+
∑

ξ∈ L,ξ�N

gξ (s) log(s + ξ)

}
+ FN(s),

where FN(s) is holomorphic for �s � −N . Finally, for arbitrary self-adjoint extensions with
A� � − 1

4 , the ζ -function has been studied by Falomir, Muschietti and Pisani [27] (see, also
[25] and joint work with Seeley [26]) for one-dimensional Laplace-type operators over [0, 1],
and by Mooers [47] who studied the general case of operators over manifolds and who was
the first to note the presence of unusual poles.

Remark 3.3. There are equally pathological heat operator and resolvent trace expansions with
exotic behaviors such as logarithmic terms of arbitrary positive and negative multiplicity; we
refer the reader to [37] for the details.

3.2. Examples of theorem 3.1

Example 1. Falomir et al [27] study the operator

� = − d2

dr2
+

1

r2
λ over [0, 1]

with the Dirichlet or Neumann condition at r = 1 and − 1
4 � λ < 3

4 ; thus, in this example,
‘A�’ is the number ‘λ.’ In this case, V = C

2, therefore Lagrangians L ⊂ C
2 are determined

by 1 × 1 matrices (numbers) A = α and B = β, not both zero, such that αβ is real. Fix such
an (α, β) and let us assume that − 1

4 < λ < 3
4 so there is no − 1

4 eigenvalue (we will come

back to λ = − 1
4 in a moment). Then with ν :=

√
λ + 1

4 and τ := 22ν �(1+ν)

�(1−ν)
,

p(x, y) := det

(
α β

τy2ν 1

)
= α − βτy2ν = α

(
1 − τβ

α
y2ν

)
,

where we assume that α, β 	= 0 (the α = 0 or β = 0 cases can be handled easily), and we
write p(x, y) as (7). Forming the power series (8), we see that

log

(
1 − τβ

α
y2ν

)
=

∞∑
k=1

(−1)k−1

k

(
−τβ

α
y2ν

)k

=
∞∑

k=1

c0,νkx
0y2νk,

where c0,νk = − 1
k

(
τβ

α

)k
and where ξ in (8) are given by the νk and � in (8) are all 0. Using

the definition (9) for pξ and �ξ , we immediately see that �νk is never defined, while

pνk = min{� � 0|c�,νk 	= 0} = 0

6
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exists for all k ∈ N. Therefore, by theorem 3.1,

ζsing(s,�L) = sin(πs)

π

∞∑
k=1

fk(s)

s + νk

with fk(s) an entire function of s such that

fk(−νk) = −c0,νk

0!

20
νk = ν

(τβ

α

)k

.

In particular, ζsing(s,�L) has possible poles at each s = −νk with residue equal to

Ress=−νkζsing(s,�L) = sin(π(−νk))

π
ν

(
τβ

α

)k

= −ν sin πνk

π

(
τβ

α

)k

,

which is the main result of [27] (see equation (7.11) of loc. cit.).
Assume now that λ = − 1

4 . In this case,

p(x, y) := det

(
α β

x 1

)
= α − βx = α

(
1 − β

α
x

)
,

where we assume that α, β 	= 0 (the α = 0 or β = 0 cases can be handled easily). Proceeding
as before, by theorem 3.1,

ζsing(s,�L) = sin(πs)

π
{−e−2s(log 2−γ ) log s + g0(s) log s},

g0(s) being an entire function of s such that g0(s) = O(s). In particular, ζ(s,�L) has a
genuine logarithmic singularity at s = 0. When β = 0, one can easily check that we still
have a logarithmic singularity at s = 0 and when α = 0, we only have the part ζreg(s,�L)

and no ζsing(s,�L); one can easily show that (see, [8]) α = 0 corresponds to the Friedrichs
extension; thus we can see that ζ(s,�L) has a logarithmic singularity for all extensions except
the Friedrichs.

Example 2. (The Laplacian on R
2) If � is the Laplacian on a compact region in R

2,
then as we saw before in section 2.1, A� has a − 1

4 eigenvalue of multiplicity one and no
eigenvalues in

(− 1
4 , 3

4

)
. Therefore, the exact same argument we used in the λ = − 1

4 case
of the previous example shows that ζ(s,�L) has a logarithmic singularity for all extensions
except the Friedrichs.

Example 3. Consider now the case of a regular singular operator � over a compact manifold
and suppose that A� has two eigenvalues in

[− 1
4 , 3

4

)
, the eigenvalue − 1

4 and another eigenvalue
− 1

4 < λ < 3
4 , both of multiplicity one. This situation occurs, for example, in the two-

dimensional flat cone in R
3 with � = S

1
ν where S

1
ν is the circle with metric dθ/ν where

1
2 < ν < 1; indeed, after a Liouville transformation, we have

A� = −ν2∂2
θ − 1

4 ,

which only has the eigenvalues − 1
4 and λ = ν2 − 1

4 in the interval
[− 1

4 , 3
4

)
. In this case, q = 2

and Lagrangians L ⊂ C
4 are determined by 2 × 2 matrices A and B such that (A B) has full

rank and A′B∗ is self-adjoint. Consider the specific examples

A =
(

0 1
−1 0

)
, B = Id.

7
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Then with τ := 22ν �(1+ν)

�(1−ν)
where ν =

√
λ + 1

4 , we have

p(x, y) := det

⎛⎜⎜⎝
0 1 1 0

−1 0 0 1
x 0 1 0
0 τy2ν 0 1

⎞⎟⎟⎠ = 1 + τxy2ν .

Forming the power series (8), we see that

log(1 + τxy2ν) =
∞∑

k=1

(−1)k−1

k
(τxy2ν)k =

∞∑
k=1

ck,νkx
ky2νk,

where ck,νk = (−1)k−1 τ k

k
. Using the definition (9) for pξ and �ξ , we immediately see that pνk

is never defined, while each �νk is defined:

�νk = min{� > 0|c�,νk 	= 0} = k.

Therefore, by theorem 3.1,

ζsing(s,�L) = sin(πs)

π

{
−e−2s(log 2−γ ) log s +

∞∑
k=1

gk(s) log(s + νk)

}
,

with gk(s) an entire function of s such that

gk(s) = (−1)k
τ k2kν

(k − 1)!
(s + νk)k−1 + O((s + νk)k).

In particular, ζsing(s,�L) has countably many logarithmic singularities!

Example 4. With the same situation as in the previous example, consider

A =
(−1 1

0 0

)
, B =

(
0 0
1 −1

)
,

so that

p(x, y) := det

⎛⎜⎜⎝
−1 1 0 0
0 0 1 −1
x 0 1 0
0 τy2ν 0 1

⎞⎟⎟⎠ = x − τy2ν = x(1 − τx−1y2ν).

Proceedings as before, by theorem 3.1,

ζsing(s,�L) = sin(πs)

π

∞∑
k=1

fk(s)

(s + νk)k+1
,

with fk(s) an entire function of s such that

fk(−νk) = (−1)k+1c−k,νk

|−k|!
2|−k| νk = (−1)k

τ kk!ν

2k
.

In particular, ζsing(s,�L) has poles of arbitrarily large order!

Example 5. Consider now the case of a regular singular operator � over a compact manifold
such that A� has three eigenvalues in

[− 1
4 , 3

4

)
, the eigenvalue − 1

4 with multiplicity two and
another eigenvalue − 1

4 < λ < 3
4 of multiplicity one. This situation occurs, for example, in

the two-dimensional flat cone in R
3 with � = S

1  S
1
ν , the disjoint union of the standard circle

8
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with metric dθ and the circle with metric dθ/ν where 1
2 < ν < 1; indeed, after a Liouville

transformation, we have

A� = (−∂2
θ − 1

4

)⊕ (−ν2∂2
θ − 1

4

)
,

where in the interval
[− 1

4 , 3
4

)
, the first operator has only the − 1

4 eigenvalue and the second
operator has only the eigenvalues − 1

4 and λ = ν2 − 1
4 . In this case, V = C

6 and Lagrangians
L ⊂ C

6 are determined by 3 × 3 matrices A and B. Consider the specific examples

A =
⎛⎝0 1 −1

1 0 0
1 0 0

⎞⎠ , B = Id.

Then with ν =
√

λ + 1
4 and τ := 22ν �(1+ν)

�(1−ν)
, using the procedure outlined several times, we

find

ζsing(s,�L) = sin(πs)

π

{
−e−2s(log 2−γ ) log s +

∞∑
k=1

fk(s)

(s + νk)k+1
+

∞∑
k=1

gk(s) log(s + νk)

}
,

where fk(s) and gk(s) are entire functions of s such that

fk(−νk) = (−1)k+1c−k,νk

k!

2k
νk = (−1)k

k
τ k k!

2k
νk = (−1)k

τ kk!ν

2k

and

gk(s) = 2ν(−1)m+1τ k

(
k

m + 1

)
×
{

1 + O((s + νk)) if k = 2m + 1 is odd,

2(s + νk) + O((s + νk)2) if k = 2m is even.

In particular, ζsing(s,�L) has poles of arbitrarily high orders and in addition to a logarithmic
singularity at the origin, countably many logarithmic singularities at the same locations of the
poles!

Example 6. From the previous examples, we can see that by looking at flat cones in R
3 whose

boundaries are disjoint unions of circles of various circumferences, one can easily come
up with completely natural (that is, geometric) zeta functions having as wild singularities
involving unusual poles and logarithmic singularities as the mind can image.

3.3. Conclusion and final remarks

In this paper, we have considered zeta functions of self-adjoint extensions of Laplace-type
operators over conic manifolds. We have presented a theorem that gives the exact structure of
zeta functions for arbitrary self-adjoint extensions of Laplace-type operators over manifolds
with conical singularities. As we have seen, the structure found can be dramatically different
from the standard one. Using this exact structure, with a suitable redefinition, functional
determinants of Laplacians on generalized cones can still be obtained [38].

The ideas presented here can equally well be applied to the Dirac operator [39]. In the
presence of a Dirac delta magnetic field [46], different self-adjoint extensions are considered
as manifestations of different physics within the vortex [18]. The physics represented by
the self-adjoint extensions described by A and B and the implications of the meromorphic
structure of the zeta functions found are very interesting questions to pursue.
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geometrico spaziale (italian) Rom. Acc. L. Rend. 5 3–12
[45] Loya P, McDonald P and Park J 2007 Zeta regularized determinants for conic manifolds J. Funct. Anal.

242 195–229
[46] Manuel C and Tarrach R 1993 Contact interactions and Dirac anyons Phys. Lett. B 301 72–6
[47] Mooers E 1999 Heat kernel asymptotics on manifolds with conic singularities J. Anal. Math. 78 1–36
[48] Ray D B and Singer I M 1971 R-torsion and the Laplacian on Riemannian manifolds Adv. Math. 7 145–210
[49] Serre J-P 1973 A Course in Arithmetic (Heidelberg: Springer)
[50] Sokolov D D and Starobinskii A A 1977 The structure of the curvature tensor at conical singularities Dokl.

Akad. Nauk SSSR 234 1043–6
[51] Sokolov D D and Starobinskii A A 1977 The structure of the curvature tensor at conical singularities J. Sov.

Phys. Dokl. 22 312–3 (Engl. Transl.)
[52] Spreafico M 2005 Zeta function and regularized determinant on a disc and on a cone J. Geom. Phys. 54 355–71
[53] Vassilevich D V 2003 Heat kernel expansion: user’s manual Phys. Rep. 388 279–360
[54] Vilenkin A 1985 Cosmic strings and domain walls Phys. Rep. 121 263–315

11

http://dx.doi.org/10.1103/PhysRevLett.64.503
http://dx.doi.org/10.1007/BF01626516
http://www.arxiv.org/abs/math/0511185
http://dx.doi.org/10.1007/s00229-007-0142-y
http://www.arxiv.org/abs/0709.1232
http://dx.doi.org/10.1088/0305-4470/32/4/006
http://dx.doi.org/10.1007/s002200050331
http://dx.doi.org/10.1016/j.jfa.2006.04.014
http://dx.doi.org/10.1016/0370-2693(93)90723-U
http://dx.doi.org/10.1016/0001-8708(71)90045-4
http://dx.doi.org/10.1016/j.geomphys.2004.10.005
http://dx.doi.org/10.1016/j.physrep.2003.09.002
http://dx.doi.org/10.1016/0370-1573(85)90033-X

	1. Introduction
	2. Conic manifolds
	2.1. Regions in
	2.2. Conic manifolds
	2.3. Self-adjoint extensions

	3. Pathological zeta functions on conic manifolds
	3.1. The main theorem
	3.2. Examples of theorem 3.1
	3.3. Conclusion and final remarks

	Acknowledgments
	References

